
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Audit-Report MetaMask key-tree Interface 02.2023
Cure53, Dr.-Ing. M. Heiderich, Dr. M. Conde

Index
Introduction
Scope
Cryptography review

Scope & findings
Key goals
Threat & attacker models
Test methodology
Future work & considerations

Identified Vulnerabilities
MM-02-001 WP1: Public key addition allows all-zero vector as input (Low)
MM-02-002 WP1: Private key addition allows all-zero vector as input (Low)
MM-02-004 WP1: Potentially invalid master private key (Low)
MM-02-005 WP1: Child key derivation function lacks error handling (Low)
MM-02-006 WP1: Code fails to reject some invalid extended keys (Medium)

Miscellaneous Issues
MM-02-003 WP1: Master key derivation lacks BIP32 compliance (Low)
MM-02-007 WP1: All-zero private key treated as invalid for ed25519 (Info)

Conclusions

Cure53, Berlin · 03/03/23 1/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction
“MetaMask provides the simplest yet most secure way to connect to blockchain-based
applications. You are always in control when interacting on the new decentralized web.”

From https://metamask.io/

This report details the scope, results, and conclusory summaries of a cryptography
review and source code audit against the MetaMask key-tree interface. The assessment
was requested by ConsenSys Software Inc. in February 2023 and initiated by Cure53 in
the same month, namely in CW08. A total of six days were allocated to fulfill this
project’s coverage expectations. All evaluation actions for this review were condensed
into a single work package (WP) for execution efficiency, as follows:

• WP1: Crypto review & code audit against the MetaMask key-tree interface

Cure53 was granted access to the repository, the corresponding commit, and any
alternative means of access required to ensure a smooth audit completion. For this
purpose, the selected methodology was white-box and a team comprising two
skillmatched senior testers was assigned to the project’s preparation, execution, and
finalization. All preparatory actions were completed in February 2023, namely in CW07,
to ensure testing could proceed without hindrance or delay.

Communications were facilitated via a dedicated, shared Slack channel deployed to
combine the workspaces of ConsenSys Software and Cure53, thereby creating an
optimal collaborative working environment. All participatory personnel from both parties
were invited to partake throughout the test preparations and discussions. In light of this,
communications proceeded smoothly on the whole. The scope was well-prepared and
transparent, no noteworthy roadblocks were encountered throughout testing, and cross-
team queries remained minimal as a result.

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was offered by Cure53 and implemented via the
aforementioned Slack channel.

Concerning the findings specifically, the testing team achieved widespread coverage
over the sole scope item, detecting a total of seven. Five of the findings were
categorized as security vulnerabilities, whilst the remaining two were deemed general
weaknesses with lower exploitation potential.

Cure53, Berlin · 03/03/23 2/19

https://cure53.de/
https://metamask.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The total yield of findings is relatively moderate, which garners a positive impression
concerning the security foundation exhibited by the MetaMask key-tree interface.
Additionally, the fact that none of the identified weaknesses exceeded a severity rating
of Medium attests to the relatively low exploitation potential persisted by the components
in scope.

All in all, Cure53 is pleased to confirm that the MetaMask team has made commendable
progress toward providing a sufficiently secured interface. Nevertheless, one can
strongly recommend addressing all issues documented in this report at the earliest
possible convenience to elevate the security foundation to an exemplary standard.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. This section will be followed by a
chapter detailing the cryptography review, which serves to provide information regarding
the scope and findings, as well as highlight this audit’s key goals and threat and attacker
model. Furthermore, the coverage achieved and assessment executed pertaining to the
in-scope interface areas are extrapolated. Finally, Cure53 highlights potential focus
areas and considerations for future MetaMask key-tree interface enhancements.

Subsequently, the report will list all findings identified in chronological order, starting with
the detected vulnerabilities and followed by the general weaknesses unearthed. Each
finding will be accompanied by a technical description and Proof of Concepts (PoCs)
where applicable, plus any relevant mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the
MetaMask key-tree interface, giving high-level hardening advice where applicable.

Cure53, Berlin · 03/03/23 3/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Scope
• Crypto review & code audit against the MetaMask key-tree interface

◦ WP1: Crypto review & code audit against the MetaMask key-tree interface
▪ Package:

• https://www.npmjs.com/package/@metamask/key-tree
▪ All sources were shared with Cure53 and are available as OSS:

• https://github.com/MetaMask/key-tree
▪ Version in scope:

• 6.2.1
◦ Key focus areas:

▪ Functional correctness of elliptic curve operations in use.
▪ Elliptic curve validation errors.
▪ Functional correctness of master key and child keys derivation function.
▪ Implementation logic to validate key derivation paths.

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 03/03/23 4/19

https://cure53.de/
https://github.com/MetaMask/key-tree
https://www.npmjs.com/package/@metamask/key-tree
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Cryptography review
In blockchain, the creation of a unique private/public keypair for each transaction is a
crucial element toward ensuring comprehensive security and privacy. Subsequently,
every private key must be backed up, for which a popular notion for wallet construction
simplification constitutes a hierarchical deterministic wallet (or HD wallet for short). At a
very high level, an HD wallet allows one to derive child keys from a single seed, thus
deterministic, and each child key can in turn be used to derive other child keys, thus
hierarchical, since keys can be organized into a tree structure or hierarchy.

The logic behind an HD wallet pertains to the following:

The seed is used to generate a master private extended key as follows:

private master extended key = private master key (32 bytes), chain code (32
bytes) = HMAC-SHA512(“Bitcoin seed”, seed)

The master public key can be computed from the master private key as usual, and the
master public key together with the exact same chain code above represents the master
public extended key. The chain code (32 random bytes) is required to derive child keys,
which is why the concept of extended key is introduced.

Any extended key can be used to derive a child key, and as such the extended key is
referred to as its parent. The number of child keys that can be derived from any
extended key constitutes 2³² maximum, so each child key has an associated index.
There are two types of child keys that can be derived: hardened (only the private
extended key can be used to derive the child public key) or unhardened (both the
extended private key or extended public key can be used to derive the child public key).
The algorithm to derive a hardened child private key (stated only over secp256k1 for
simplicity) constitutes the following:

• key material (32 bytes), child chain code (32 bytes) = HMAC-SHA512(parent
chain code, 0x00 || parent private key || index)

• child private key (32 bytes) = key material + parent private key (mod curve
order)

The method by which to derive a non-hardened child key (stated only over secp256k1
for simplicity) represents the following:

• key material (32 bytes), child chain code (32 bytes) = HMAC-SHA512(parent
chain code, parent public key || index)

• Non-hardened private child key:
child private key (32 bytes) = key material + parent private key (mod curve
order)

Cure53, Berlin · 03/03/23 5/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

• Non-hardened public child key:
child public key (32 bytes) = key material + parent public key (point addition)

Several BIP and SLIP specifications related to HD wallets are relevant for this review,
since MetaMask’s key-tree interface is based upon them. All of these are extrapolated
below:

• BIP32: This specification describes an algorithm to generate a master key from a
sufficiently random seed, and child keys from a given parent extended key. This
algorithm is based on HMAC-SHA512 and elliptic curve operations performed
over the curve secp256k1. Furthermore, BIP32 introduces a notation to refer to a
given child key by its derivation path. For example, m/0 denotes the child key
with index 0 that is generated from the master key, with a depth 1 since it’s one
derivation away from the master key. m/0/1 denotes the child key with index 1
derived from the child key, an index 0 derived from the master key (with depth 2),
and so on. In this notation, a hardened child is indicated by an apostrophe (‘); for
instance, m/0’ denotes the hardened child key with index 0 derived from the
master key.

• BIP39: This specification details a user-friendly method by which to create a
random seed from a mnemonic code (12-24 words), which is easier for users to
remember or safely store.

• SLIP10: This specification is a generalization of BIP32 to include support for
other curves, namely secp256r1 (NIST P-256) and ed25519. SLIP10 reduces
exactly to BIP32 if secp256k1 is considered.

• BIP44: BIP32 imposes no constraints on hierarchy levels or use of keys of each
level, which may lead to interoperability issues amongst wallets following BIP32.
This specification defines a standard logical hierarchy for HD wallets,
establishing at most five hierarchical levels, as follows:

m/purpose’/coin type’/account’/change/address index

MetaMask’s key-tree package offers an interface that allows the creation of child keys
for any depth of a SLIP10 or BIP44 path. Notably, this relies on a third-party
implementation of the curve secp256k1 and includes support for ed25519 (though not
for NIST-256).

Cure53, Berlin · 03/03/23 6/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Scope & findings
Due to the relatively simple cryptographic primitives underlying the specifications and in
light of the above, Cure53 focused on a cryptographic review of the following
functionalities deemed sensitive in nature:

• createBip39KeyFromSeed: used to generate the master key from a BIP39 seed.
• publicAdd: elliptic curve logic used to generate unhardened child public keys.
• privateAdd: elliptic curve logic used to generate private child keys (both hardened

and unhardened).
• fromExtendedKey: method to instantiate extended keys with certain properties

(depth, index, parent fingerprint, etc.).
• validatePathSegment: logic to validate a derivation path.
• deriveChildKey: logic to generate a child key either from a master key, from a

parent extended key, or from a derivation path.

Here, Cure53 would like to underline that the majority of detected issues pertain to an
improper check concerning whether the validity of the master key or the child keys
derived from a parent extended key. Nevertheless, this is likely risk-averse in practice
since the probability of occurrence is extremely low, though still remains formally
incorrect and supposes a deviation from the SLIP10 standard.

Key goals
The primary goal of this audit was to verify that the key-tree package permits secure key
creation for any valid SLIP10 or BIP44 path.

From a cryptographic perspective, this involves ensuring that the SLIP10 and BIP44
specifications are followed so that the master key and child key derivation are correctly
realized. From an implementation point of view, one must validate the correctness of
both the logic utilized to establish key hierarchy and the logic used to validate key
derivation paths.

Threat & attacker models
If the BIP32/SLIP10 strong specification is followed, the creation of keys is secure - if
correctly implemented - under the assumption that the seed, the private master key, and
every other extended private key are not leaked at any point.

MetaMask's key-tree repository was analyzed to verify that it does not persist any
additional attack surface to that stipulated by the specifications.

Cure53, Berlin · 03/03/23 7/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Test methodology
The assessment was initiated by reviewing the correctness of the elliptic curve
operations involved in the algorithm for child key derivation. The integration of these
elliptic curve operations within the child key derivation function was also reviewed.
Cure53 paid particular attention to the master key derivation and any potentially invalid
keys that could arise during child key derivation.

Since MetaMask’s key-tree constitutes an implementation for key creation for SLIP10 or
BIP44 paths, full compliance with these specifications was closely reviewed, particularly
regarding child key derivation.

Finally, the logic used to validate extended keys and key derivation paths was subjected
to stringent review in order to locate any potential weaknesses that may impact child key
derivation security, though no severe associated issues were identified.

Future work & considerations
All in all, Cure53 is pleased to confirm that MetaMask’s key-tree interface facilitates
secure key creation for SLIP10 or BIPP44 paths. Nevertheless, the implementation
would certainly benefit from ensuring the expected rejection of invalid extended keys,
which would help to negate any undesirable attack avenues.

Cure53, Berlin · 03/03/23 8/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.g., MM-02-
001) to facilitate any future follow-up correspondence.

MM-02-001 WP1: Public key addition allows all-zero vector as input (Low)
Whilst reviewing the key-tree repository, the observation was made that the
deriveChildKey function ultimately relies on a call to the publicAdd function whenever an
unhardened public key child is due for derivation from a parent public key. However, the
publicAdd function accepts an input that results in the generation of a public key identical
to the parent public key.

Specifically, the publicAdd function inserts two points of the elliptic curve given as an
input to the function. When called inside the function deriveChildKey, the addition of the
parent public key is triggered with an arbitrary point tweak*G, whereby tweak represents
an input to the function and G represents the curve generator. However, in the event
tweak equals the all-zero vector, the child public key equals the addition of the parent
public key and 0*G. This addition yields precisely the parent public key, since 0*G
equals the neutral element of the elliptic curve. All in all, this means that the derived
public key child equals the parent public key.

Public key reuse - and thus the reuse of an address - is considered an undesirable
behavior in the blockchain context for privacy reasons. Transactions are publicly
recorded on the blockchain, whilst address reuse may facilitate easier tracking, which is
particularly suboptimal if the address is linkable to an identity.

Affected file:
key-tree/src/curves/secp256k1.ts

Affected code:
export const publicAdd = (
 publicKey: Uint8Array,
 tweak: Uint8Array,
): Uint8Array => {
 const point = Point.fromHex(publicKey);
 [...]
 const newPoint = point.add(Point.fromPrivateKey(tweak));

 newPoint.assertValidity();
 return newPoint.toRawBytes(false);
};

Cure53, Berlin · 03/03/23 9/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises enforcing a check to ensure that tweak differs
from the all-zero vector, though the probability of this condition holding is negligible.

MM-02-002 WP1: Private key addition allows all-zero vector as input (Low)
Whilst reviewing the key-tree repository, the observation was made that the
deriveChildKey function ultimately relies on a call to the privateAdd function whenever a
private key child is due for derivation from a parent private key. However, the privateAdd
function accepts an input that results in the generation of a private key identical to the
parent private key.

Specifically, the privateAdd function inserts two scalars given as an input to the function.
When called inside the deriveChildKey function, the addition of the parent private key is
triggered with an arbitrary scalar tweak, whereby tweak represents an input to the
function. However, in the eventuality tweak equals the all-zero vector, this addition will
precisely yield the parent private key.

All in all, this behavior means that the derived child private key equals the parent private
key, which constitutes an undesirable behavior as previously mentioned in ticket MM-02-
001.

Affected file:
key-tree/src/derivers/bip32.ts

Affected code:
export function privateAdd(
 privateKeyBytes: Uint8Array,
 tweakBytes: Uint8Array,
 curve: Curve,
): Uint8Array {
 const privateKey = bytesToBigInt(privateKeyBytes);
 const tweak = bytesToBigInt(tweakBytes);

 if (tweak >= curve.curve.n) {
 throw new Error('Invalid tweak: Tweak is larger than the curve order.');
 }
 const added = mod(privateKey + tweak, curve.curve.n);
 const bytes = hexToBytes(added.toString(16).padStart(64, '0'));
 if (!curve.isValidPrivateKey(bytes)) {
 throw new Error(
 'Invalid private key or tweak: The resulting private key is invalid.',
);
 }
 return bytes;
}

Cure53, Berlin · 03/03/23 10/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises enforcing that the tweak differs from the all-zero
vector, though the probability of this condition holding is negligible.

MM-02-004 WP1: Potentially invalid master private key (Low)
Whilst assessing the key-tree repository, the discovery was made that the derivation of
the master private key is not fully compliant with BIP32 specification, as invalid private
master keys are not discarded if the curve secp256k1 is utilized. This is not relevant for
the ed25519 curve, since all possible private master keys are valid in this scenario.

For the secp256k1 in particular, one must ensure that the resulting 32-bytes private
master key (interpreted as an integer) computed in createBip39KeyFromSeed is greater
than zero and strictly less than the curve order. The check against an all-zero private
master key is achieved when an SLIP10 node intends to be instantiated with a private
key of this nature, resulting in an error. However, the check to guarantee that the 32-
bytes private master key is strictly less than the curve order is absent.

Affected file:
key-tree/src/derivers/bip39.ts

Affected code:
export async function createBip39KeyFromSeed(
 seed: Uint8Array,
 curve: Curve = secp256k1,
): Promise<SLIP10Node> {
 const key = hmac(sha512, curve.secret, seed);
 const privateKey = key.slice(0, 32);
 const chainCode = key.slice(32);

 const masterFingerprint = getFingerprint(
 await curve.getPublicKey(privateKey, true),
);

 return SLIP10Node.fromExtendedKey({
 privateKey,
 chainCode,
 masterFingerprint,
 depth: 0,
 parentFingerprint: 0,
 index: 0,
 curve: curve.name,
 });
}

Cure53, Berlin · 03/03/23 11/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue and fully comply with BIP32, Cure53 advises ensuring that the
master private key (as an integer) is strictly less than the curve order. In this case, an
error should be thrown to allow an application to manage the generation of another
mnemonic.

MM-02-005 WP1: Child key derivation function lacks error handling (Low)
Whilst evaluating the key-tree repository, the observation was made that the function
that derives child keys does not handle the case in which the derived key is invalid. In
this case, the function deriveChildKey would simply fail, which does not comply with the
SLIP10 specification.

In particular, the SLIP10 specifications include error handling in this case. SLIP10
establishes that the child key should be re-derived if an invalid key is encountered when
deriving a child key with index i, as follows:

key material (32 bytes), child chain code (32 bytes) = HMAC-SHA512(parent chain
code, 0x01 || chain code from invalid key || index)

Again, this process exhibits a negligible probability of occurrence, though should still be
addressed to ensure compliance with SLIP10. Furthermore, this would prevent an
application from consuming the library via error management when this can simply be
made transparently.

Affected file:
key-tree/src/derivers/bip32.ts

Affected code:
export async function deriveChildKey({
 path,
 node,
 curve = secp256k1,
}: DeriveChildKeyArgs): Promise<SLIP10Node> {
 assert(typeof path === 'string', 'Invalid path: Must be a string.');

 if (node.privateKeyBytes) {
 [...]
 const { privateKey, chainCode } = await generateKey({
 privateKey: node.privateKeyBytes,
 chainCode: node.chainCodeBytes,
 secretExtension,
 curve,
 });

Cure53, Berlin · 03/03/23 12/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 [...]
 }

 [...]
 const { publicKey, chainCode } = generatePublicKey({
 publicKey: node.compressedPublicKeyBytes,
 chainCode: node.chainCodeBytes,
 publicExtension,
 curve,
 });

 [...]
}

To mitigate this issue, Cure53 recommends deriving a new child key (as established in
SLIP10) in the event an error is encountered due to the derivation of an invalid key. This
should be easily resolved with a try/catch block.

MM-02-006 WP1: Code fails to reject some invalid extended keys (Medium)
Whilst examining the key-tree repository, the observation was made that the
fromExtendedKey method of the SLIP10Node class fails to reject certain types of keys
with invalid properties. In fact, some invalid keys are accepted from the BIP32
specification1 test vectors.

As deducible in the code snippet, the method only checks for non-negative index, depth,
and parent fingerprint. However, these checks are insufficiently exhaustive since
impossible relations between depth and index, depth and parent fingerprint, and depth
and master fingerprint are not investigated.

In particular, valid keys with the following invalid properties (hence invalid extended
keys) would be accepted when they should be rejected:

• A valid key with zero depth and non-zero parent fingerprint.
• A valid key with zero depth and non-zero index.
• A valid key with non-zero depth and zero parent fingerprint.
• A valid key with depth >=2 and parentFingerprint = masterFingerprint.

Notably, the BIP44Node classes’ fromExtendedKey method (which calls
decodeFromExtendedKey) and BIP44CoinTypeNode share this same issue.

1 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Cure53, Berlin · 03/03/23 13/19

https://cure53.de/
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The impact of accepting these invalid key families (and others) entirely depends on how
the library is leveraged by the application in question. Nevertheless, Cure53
recommends ensuring that invalid keys of this nature are rejected to avoid any
associated vulnerabilities, such as a key usage of a different type.

Affected file:
key-tree/src/SLIP10Node.ts

Affected code:
 static async fromExtendedKey({
 depth,
 masterFingerprint,
 parentFingerprint,
 index,
 privateKey,
 publicKey,
 chainCode,
 curve,
 }: SLIP10ExtendedKeyOptions) {
 const chainCodeBytes = getBytes(chainCode, BYTES_KEY_LENGTH);

 validateCurve(curve);
 validateBIP32Depth(depth);
 validateBIP32Index(index);
 validateParentFingerprint(parentFingerprint);

 if (privateKey) {
 const privateKeyBytes = getBytes(privateKey, BYTES_KEY_LENGTH);

 return new SLIP10Node({
 depth,
 masterFingerprint,
 parentFingerprint,
 index,
 chainCode: chainCodeBytes,
 privateKey: privateKeyBytes,
 publicKey: await getCurveByName(curve).getPublicKey(privateKeyBytes),
 curve,
 });
 }

 if (publicKey) {
 const publicKeyBytes = getBytes(
 publicKey,
 getCurveByName(curve).publicKeyLength,
);

 return new SLIP10Node({

Cure53, Berlin · 03/03/23 14/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 depth,
 masterFingerprint,
 parentFingerprint,
 index,
 chainCode: chainCodeBytes,
 publicKey: publicKeyBytes,
 curve,
 });
 }

 throw new Error(
 'Invalid options: Must provide either a private key or a public key.',
);
 }

To mitigate this issue, Cure53 recommends including exhaustive checks to reject these
invalid key families. In addition, the developer team should thoroughly check that all
invalid extended keys from the reference test vectors are indeed rejected.

Cure53, Berlin · 03/03/23 15/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

MM-02-003 WP1: Master key derivation lacks BIP32 compliance (Low)
Whilst reviewing the key-tree repository, the observation was made that
createBip39KeyFromSeed allows generating the master key from a seed that is not
guaranteed to meet the length requirements from the BIP32 specification, which
establishes that the seed length should comprise between 128 and 512 bits.

Cure53 would like to underline that this function is leveraged correctly at all times in the
key-tree repository with an input seed that is generated according to BIP39 via the call to
mnemonicToSeed, hence satisfying the length requirements. However, since consumers
can still access this method by importing metamask/key-tree/derivation (although its use
is strongly discouraged in the documentation), one can recommend including a check for
the seed length, as this could lead to the generation of a weak master key (and thus all
keys) if used incorrectly.

Affected file:
key-tree/src/derivers/bip39.ts

Affected code:
export async function createBip39KeyFromSeed(
 seed: Uint8Array,
 curve: Curve = secp256k1,
): Promise<SLIP10Node> {
 const key = hmac(sha512, curve.secret, seed);
 const privateKey = key.slice(0, 32);
 const chainCode = key.slice(32);

 const masterFingerprint = getFingerprint(
 await curve.getPublicKey(privateKey, true),
);

 return SLIP10Node.fromExtendedKey({
 privateKey,
 chainCode,
 masterFingerprint,
 depth: 0,
 parentFingerprint: 0,
 index: 0,

Cure53, Berlin · 03/03/23 16/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 curve: curve.name,
 });
}

To mitigate this issue, Cure53 advises integrating a check to ensure that the length of
the seed resides in the expected range (128 to 512 bits) and ensuring that the master
private key is valid.

MM-02-007 WP1: All-zero private key treated as invalid for ed25519 (Info)
Whilst reviewing the key-tree repository, the observation was made that the private key
consisting of the all-zero vector is considered invalid, irrespective of the curve choice.
However, a private key of this nature remains valid for the ed25519 curve.

This behavior occurs with extremely low probability and does not negatively influence
security. As such, this ticket merely serves for greater transparency and full compliance
with SLIP10.

Cure53, Berlin · 03/03/23 17/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW08 2023 testing against the MetaMask key-tree interface by the
Cure53 team - will now be discussed at length. To summarize, the confirmation can be
made that the components under scrutiny have garnered a relatively strong impression;
evident security strengths were observed, though some minor vulnerabilities were
detected, as follows.

In context, a hierarchical deterministic wallet eases the use of a unique private/public
keypair for each transaction, which benefits privacy and security in the blockchain realm.

The hierarchical deterministic wallet exhibits a twofold raison d'etre: firstly, the existence
of a seed from which all keys are derivable; and secondly, the fact that any given key
can be used to derive other keys from it, allowing for a defined key hierarchy.

Specifications related to the realization of hierarchical deterministic wallets are BIP32,
SLIP10 (which represents a generalization of BIP32 to add support for more elliptic
curves), BIP39, and BIP44. BIP32 and SLIP10 describe the algorithm to derive the
master key from a seed and child keys from a parent, and introduce a notation to identify
a child key from their derivation path (this can be seen as the path from the master to the
child key). BIP39 purports a user-friendly method by which to derive a seed from a
mnemonic code, whilst BIP44 describes a standard logical hierarchy that can be
leveraged.

MetaMask’s key-tree interface implements key creation for any level of a valid SLIP10 or
BIP44 derivation path, including support for the ed25519 curve only (though not for NIST
P-256).

In summation, Cure53 observed that the MetaMask interface offers relatively solid
security measures on the whole. The majority of vulnerabilities detected pertain to the
lack of insufficient checks in order to verify the validity of the master key derived from the
seed or the child keys derived from a parent. Moreover, the all-zero vector private key is
treated as invalid for the ed25519 curve, which is an incorrect procedure. All of these
issues are formally incorrect but do not incur any tangible risk in practice due to the
extremely low probability of occurrence. However, they still constitute formal issues that
should be addressed to ensure adherence to the aforementioned specifications.

The most relevant issue is documented under ticket MM-02-006, since a method
accepts certain families of invalid extended keys when they should be rejected. This is
persisted because correlations between depth, index, and parent fingerprint - which are
all properties of extended keys - have not been taken into consideration.

Cure53, Berlin · 03/03/23 18/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Cure53 would also like to underline that the function responsible for child key generation
relies on the aforementioned invalid extended key instantiation method. As such, one
can strongly recommend resolving this issue as soon as possible to avoid unexpected
attacks.

All in all, following the completion of this review, Cure53 is pleased to confirm that the
MetaMask key-tree interface adheres to relatively robust security standards. This
viewpoint is corroborated by the lack of any serious cryptography-related issues raised
during this audit, as well as the absence of any suboptimal implementation choices that
may facilitate generation of child keys with unexpected derivation paths or invalid
properties, or abuse of the child keys derivation function for malicious purposes.

Cure53 would like to thank Christian Montoya, Shuyao Kong, Maarten Zuidhoorn, Olaf
Tomalka, and Erik Marks from the ConsenSys Software Inc. team for their excellent
project coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin · 03/03/23 19/19

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report MetaMask key-tree Interface 02.2023
	Index
	Introduction
	Scope
	Cryptography review
	Scope & findings
	Key goals
	Threat & attacker models
	Test methodology
	Future work & considerations

	Identified Vulnerabilities
	MM-02-001 WP1: Public key addition allows all-zero vector as input (Low)
	MM-02-002 WP1: Private key addition allows all-zero vector as input (Low)
	MM-02-004 WP1: Potentially invalid master private key (Low)
	MM-02-005 WP1: Child key derivation function lacks error handling (Low)
	MM-02-006 WP1: Code fails to reject some invalid extended keys (Medium)

	Miscellaneous Issues
	MM-02-003 WP1: Master key derivation lacks BIP32 compliance (Low)
	MM-02-007 WP1: All-zero private key treated as invalid for ed25519 (Info)

	Conclusions

