
MetaMask Snaps
Security Audit Report

Consensys Software
Inc.
Final Audit Report: 8 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: SHA Checksum Bypass

Issue B: Snap Execution Exceeds Timeout

Suggestions

Suggestion 1: Implement Proper Validation of the BIP32 Derivation Path

Suggestion 2: Remove __proto__ objects From initialPermissions

Suggestion 3: Upgrade Insecure Dependencies

About Least Authority

Our Methodology

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 1
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Consensys Software Inc. has requested that Least Authority perform a security audit of their MetaMask
Snaps.

Project Dates
● April 4, 2023 - June 8, 2023: Initial Code Review (Completed)
● June 12, 2023: Delivery of Initial Audit Report (Completed)
● September 6, 2023: Verification Review (Completed)
● September 8, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Jehad Baeth, Security Researcher and Engineer
● Alejandro Flores, Security Researcher and Engineer
● Ann-Christine Kycler, Security Researcher and Engineer
● JR, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the MetaMask Snaps followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● MetaMask Snaps:

https://github.com/metamask/snaps-monorepo

Specifically, we examined the Git revision for our initial review:

● 47258ef13ea928aa1bb1e1c6227073e57577d272

For the verification, we examined the Git revision:

● 4b6bcfa933b2f09a12baebbb026b8ef160217857

For the review, this repository was cloned for use during the audit and for reference in this report:

● MetaMask Snaps:
https://github.com/LeastAuthority/MetaMask_Snaps

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● MetaMask Introduction:
https://docs.metamask.io/guide/snaps.html

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 2
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MetaMask/snaps
https://github.com/LeastAuthority/MetaMask_Snaps
https://docs.metamask.io/guide/snaps.html

● MetaMask Docs:
https://docs.metamask.io/guide/snaps.html

● Snaps Platform Audit Scope 2022-11.pdf (shared with Least Authority via email on 9 November
2022)

● MetaMask Snaps Diagram.pdf (shared with Least Authority via email on 9 November 9 2022)
● Snaps Vector Attack Tree Example.pdf (shared with Least Authority via email on 8 December 2022)

In addition, this audit report references the following documents:
● BIP32:

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#user-content-Extended_keys

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the wallet;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Malicious attacks and security exploits that would impact the wallet;
● Vulnerabilities in the wallet code and whether the interaction between the related and network

components is secure;
● Exposure of any critical or sensitive information during user interactions with the wallet

and use of external libraries and dependencies;
● Proper management of encryption and storage of private keys;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Additionally, the MetaMask team requests that the following be addressed in the Snaps Platform Audit:

Possible Critical Issues:

● Escaping Secure ECMAScript (SES) confinement; and
○ Accessing globals not injected during SES sandbox creation
○ Spoofing MetaMask-extension <-> execution environment communication
○ Escaping execution environment’s iframe altogether

● Exfiltrating MetaMask’s internal state.

Possible Major Issues:

● Corrupting MetaMask’s internal state (either in-memory or persistent);
● Getting access to endowments not specified in Manifest / not approved by user;

○ Getting access to other coin types than those requested (especially important for
snap_getBip44Entropy_*)

● Executing Denial of Service (DoS) attacks on the main MetaMask extension; and
● Exfiltrating state of other Snaps (either in-memory or persisted through snap_manageState

endowment).

Possible Minor Issues:

● Corrupting another Snap’s internal state (either in-memory or persisted through
snap_manageState endowment);

● Allowing a Snap to execute code outside of expected time boundaries;

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 3
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.metamask.io/guide/snaps.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#user-content-Extended_keys

○ Escaping request timeout and execution during idle timeout
○ Escaping idle timeout altogether and avoiding termination
○ Executing code after endowments have been torn down
○ See known issues below:

■ Corrupting execution environment iframe’s state;
■ Allowing the DApp to connect to a Snap without previous user approval; and
■ Executing DoS attacks on other Snaps.

Other Potential Issues To Be Verified:

● Snaps can get access to root global scope or communicate with other Snaps by traversing /
modifying globals injected in SES.

Findings
General Comments
MetaMask Snaps (Snaps) is an interface intended to enable the interaction between the MetaMask
Extension Wallet users and dApps. The Snaps system is composed of a server component that is
controlled by the MetaMask team, and a client component that is implemented by the developers of
dApps. Snaps provides a mechanism for a user to grant dApps permissions to execute actions in the
wallet.

Allowing third-party developers to execute code inside a user's wallet carries inherent risks. Snaps uses
Agoric’s Secure ECMAScript (SES) to build a sandbox (compartment) where untrusted code can be
executed safely. In a previous audit published on March 4, 2020, our team audited SES and did not identify
any breaches of SES compartments. During our review, our team assumed that SES works as intended
and did not attempt to break SES itself. Rather, our focus was on whether the Snaps system used SES in a
secure manner. We examined the JavaScript APIs available in the SES compartment and did not find any
way to escape the SES compartment, nor to get unattenuated JavaScript objects inside the compartment.
Additionally, we did not find a way to exfiltrate or corrupt MetaMask’s internal state from within the SES
compartment.

Our team closely investigated the relationship between endowments and permissions. While the
permissions system can be used to request access to restricted methods and endowments, we found
that the permission system only allows granting access to endowments that are defined in the Snaps
system.

We investigated whether untrustworthy actors could use malicious Scalable Vector Graphics (SVG) files
using the Snaps’ logo but did identify any vulnerabilities. Additionally, we did not find a way to inject code
into the templating system via the Snap Manifest file.

We investigated the Remote Procedure Call (RPC) communication system between dApps and Snaps, as
well as between Snaps. We found that Snaps could not install Snaps, nor invoke them.

Once dynamic permissions were disabled, we did not find a way for Snaps to request access to what they
were not initially given in the Manifest. This includes accessing derivation paths for tokens that were not
specified in the Manifest.

Our team found that if __proto__ items were inserted inside the Snap Manifest, these could be added
without changing the Shasum of the Snap. Furthermore, we found that injected __proto__ items inside
initialPermissions were loaded into the extension and present during the installation and review of

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 4
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

the initialPermissions. We did not find a way for this to be exploited into a full prototype pollution
vulnerability (Issue A).

We also did not find a way to manipulate the state of other Snaps, nor to exceed the storage limitations of
a Snap (100mb), and are continuing to investigate the possibility of a Denial of Service (DoS) related to
storage overflows, where a Snaps storage is filled and causes a failure in the MetaMask extension.

We inspected whether Snaps could access derivation paths for BIP32 and BIP44 beyond what is specified
in the Manifest, and were not able to bypass the validation checks. However, we recommend that
additional validation be performed (Suggestion 2).

We found that Snaps will timeout when a Snap is continually sending requests to make the execution time
of Snaps unbounded. We observed one Snap, which will continually make requests, without the
long-running endowment run, for at least an hour (Issue B).

It is clear that the system was designed with security in mind. The SES compartments and endowments
are thoughtfully considered so that only authorized and hardened APIs are available to Snaps.
Additionally, all communication is performed over restricted RPC channels that further isolate the Snaps
execution environment from the larger JavaScript environment.

Code Quality
In our review of the Snaps Monorepo code, our team found that the implementation is well-organized and
in adherence with best practices.

Tests

We found that sufficient test coverage of Snaps is implemented to check for implementation errors and
unexpected behavior that could lead to security vulnerabilities.

Documentation
The MetaMask ecosystem is generally well-documented. Our team noted the Snap Improvement Proposal
(SIP) system, which provides a uniform methodology for proposing, discussing, and documenting design
and implementation changes.

Code Comments

The Snaps implementation is well-commented, with functions and their parameters well-described.

Scope
This review has been designed with the current first phase covering the Snaps design and
implementation. The second phase of this review will cover the extension and allow our team to make a
comprehensive assessment of the system.

During the course of the audit, the MetaMask team discovered and addressed Issues exploitable through
the RPC method. Patches for these Issues were cherry-picked into a new commit for the audit. One of
these patches disabled the dynamic requesting and allocations of permissions. This solved an Issue
identified by our team whereby permissions granted to a Snap for one domain were also granted to all
domains for that Snap. An additional Issue resolved by these patches was that the permissions
infrastructure was shared by both Snaps and dApps. As a result, dApps could, in theory, request
permissions that were Snap specific. These Issues were found to be resolved in the latest commit. With
dynamic permissions disabled, we found no way for a dApp to get access to restricted Snap methods or
permissions.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 5
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Subsequently, the scope of our review was updated with commits that resolve the Issues identified by the
MetaMask team. Our team validated these Issues, and reviewed the fixes in the commits.

While the Permission Controller was out of scope for this audit, the functionality where Snaps interacts
closely with the Permission Controller code was investigated for any potential security issues.

Dependencies

We found that two of the example packages within the Snaps Monorepo have been classified as malware.
Additionally, there were other high-risk vulnerabilities found in the dependencies, which we recommend be
upgraded or replaced (Suggestion 3).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: SHA Checksum Bypass Resolved

Issue B: Snap Execution Exceeds Timeout Unresolved

Suggestion 1: Implement Proper Validation of the BIP32 Derivation Path Resolved

Suggestion 2: Remove __proto__ objects From initialPermissions Resolved

Suggestion 3: Upgrade Insecure Dependencies Resolved

Issue A: SHA Checksum Bypass

Location

packages/snaps-utils/src/snaps.ts#L201

Synopsis

The SHA checksum of a Snap can be bypassed by inserting __proto__ objects into the Manifest. This
will change the Manifest without changing the Shasum Hash.

Impact

Items in __proto__ can end up inside the application, even when the Snap is not resigned. While we
were able to identify malicious __proto__ objects inside the initialPermissions object during Snap
install, we found no way to exploit this.

Remediation

We recommend that __proto__ objects be included as part of the hashing pre-image, or ensuring that all
__proto__ objects are removed from the Manifest before being processed (See Suggestion 2).

Status

The MetaMask team addressed this Issue by adding a sanitizing function in the out-of-scope library
@metamask/utils and using it whenever JSON has to be parsed for generating the Manifest file. This
strips any __proto__ objects from the JSON.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 6
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/MetaMask_Snaps/blob/main/packages/snaps-utils/src/snaps.ts#L201

Verification

Resolved.

Issue B: Snap Execution Exceeds Timeout

Synopsis

Repeated frivolous RPCs using await promises in a Snap can manipulate the requestQueue so that the
Snap execution timeout is overridden, and the Snap executes indefinitely.

Impact

This Issue could result in the unintended behavior of the Snap.

Technical Details

Consider the following proof of concept that illustrates an attack:

let now = Date.now();

while(true) {

let state = await snap.request({

method: 'snap_manageState',

params: { operation: 'get'}

})

console.log(state);

console.log('Doing other stuff here');

let duration = Date.now();

console.log(`${duration - now} time passed`);

}

The aforementioned code requires the Snap to have both RPC and manageState permissions, but does
not require the long-running endowment.

With the above code, we observed execution times from 15 to 45 minutes. However, this only occurs
when the await keyword is used. When the code is changed so that the snap.request call resolves
into a promise using .then, the Snap execution times out after approximately 60 seconds.

Remediation

Our team did not find a viable solution during the time of this audit to mitigate this Issue sufficiently. We
recommend that this be subject to further investigation in the future.

Status

The MetaMask team stated that they were unable to prevent a Snap from executing an arbitrary function
indefinitely. Hence, after evaluation, the team decided to defer the Issue, as each Snap is sufficiently
sandboxed, such that this does not pose a major risk to the platform.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 7
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Verification

Unresolved.

Suggestions

Suggestion 1: Implement Proper Validation of the BIP32 Derivation Path

Location.

src/manifest/validation.ts#L42

Synopsis

According to the Bitcoin Improvement Proposal BIP32, numbers have to be in a specific range in the
derivation path. However, the Snap permits the setting of a derivation path outside of the specified range

. This is not properly checked during Manifest validation. Consequently, if the[0 , 2³¹ − 1]
getBIP32Entropy call is executed with the incorrect validation path, the Snap will allow the RPC to be
performed, but it will then fail in the MetaMask/key-tree dependency. This will result in an error in the
extension, which will then be relayed back to the DApp and displayed as an alert error message.

The validation RegEx currently checks if the input is a slash number followed by potentially another slash
and another number. However, it does not validate that the input is in that specific range .[0 , 2³¹ − 1]

Mitigation

Although this suggestion does not result in an exploit, we recommend performing proper validation of the
BIP32 derivation path, according to the standard explained in the BIP32 Proposal.

Status

The MetaMask team has added a range check to the out-of-scope function
isValidBIP32PathSegment from the @metamask/key-tree package and is using it to validate
BIP32 validation paths.

Verification

Resolved.

Suggestion 2: Remove __proto__ objects From initialPermissions

Synopsis

__proto__ objects in the initialPermissions of the Snap Manifest are present in the
initialPermissions object during Snap installation. While this was not exploitable as a prototype
pollution issue, the presence of arbitrary objects in __proto__ is unnecessary.

Mitigation

We recommend that the initialPermissions object be sanitized by running the object through
JSON.stringify and then JSON.parse.

Status

The MetaMask team has resolved this suggestion by implementing the getSafeJSON function from the
@metamask/utils package that strips any __proto__ objects from the JSON.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 8
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MetaMask/snaps/blob/f6dc58fa0e2ef24adbe1447c4cc9a0db46123102/packages/snaps-utils/src/manifest/validation.ts#L42
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#user-content-Extended_keys
https://github.com/MetaMask/key-tree/

Verification

Resolved.

Suggestion 3: Upgrade Insecure Dependencies

Synopsis

Running npm audit on the codebase reveals that several dependencies are outdated and have
vulnerabilities. While it is not clear to what extent these would be exploitable, it is good practice to keep
dependencies up-to-date in order to avoid importing vulnerable code.

Mitigation

We recommend updating or replacing the reported dependencies.

Status

The MetaMask team has upgraded the dependencies as recommended.

Verification

Resolved.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 9
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 10
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | MetaMask Snaps | Consensys Software Inc. 11
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

