
MetaMask Snaps-Extension Integration
Security Audit Report

ConsenSys Software,
Inc.
Final Audit Report: 8 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Areas of Investigation

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: No Calls to SnapsRegistry:updateBlockedSnaps Found

Suggestions

Suggestion 1: Remove Override Functionality

Suggestion 2: Check Origin of Untrusted Communication Channels

About Least Authority

Our Methodology

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 1
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
ConsenSys Software Inc. has requested that Least Authority perform a security audit of their MetaMask
Snaps Extension.

Project Dates
● June 13, 2023 - July 17, 2023: Initial Code Review (Completed)
● July 19, 2023: Delivery of Initial Audit Report (Completed)
● September 6, 2023: Verification Review (Completed)
● September 8, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Jehad Baeth, Security Researcher and Engineer
● Benoit Donneaux, Security Researcher and Engineer
● Ann-Christine Kycler, Security Researcher and Engineer
● JR, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the MetaMask Snaps Extension
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● MetaMask Extension:

https://github.com/MetaMask/metamask-extension
○ Only code inside fences is in scope ///:BEGIN:ONLY_INCLUDE_IN(snaps), and any code

outside of the fences is out of scope for this review.

Specifically, we examined the Git revision for our initial review:

● 1a8a263cc1ffc420056ac1ede6659349a4bb5efa

For the verification, we examined the Git revision:

● b963c9a40e6fea02b972f30d43bb893d9d7e84c7

For the review, this repository was cloned for use during the audit and for reference in this report:

● MetaMask Extension:
https://github.com/LeastAuthority/MetaMask_Extension_Snaps

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 2
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MetaMask/metamask-extension
https://github.com/LeastAuthority/MetaMask_Extension_Snaps

● MetaMask Introduction Documentation:
https://docs.metamask.io/guide/snaps.html

● Snaps Platform Audit Scope 2022-11.pdf (shared with Least Authority via email on 9 November
2022)

● MetaMask Snaps Diagram.pdf (shared with Least Authority via email on 9 November 2022)
● Snaps Vector Attack Tree Example.pdf (shared with Least Authority via email on 8 December 2022)

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the wallet;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Malicious attacks and security exploits that would impact the wallet;
● Vulnerabilities in the wallet code and whether the interaction between the related and network

components is secure;
● Exposure of any critical or sensitive information during user interactions with the wallet

and use of external libraries and dependencies;
● Proper management of encryption and storage of private keys;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Additionally, the MetaMask team requests that the following be addressed in the Snaps Platform Audit:

Possible Critical Issues:

● Exfiltrating MetaMask’s internal state.

Possible Major Issues:

● Corrupting MetaMask’s internal state (either in-memory or persistent);
● Executing Denial of Service (DoS) attacks on the main MetaMask extension; and
● Exfiltrating state of other Snaps (either in-memory or persisted through snap_manageState

endowment).

Possible Minor Issues:

● Corrupting another Snap’s internal state (either in-memory or persisted through
snap_manageState endowment);

● Corrupting the execution environment iframe’s state;
● Allowing the dApp to connect to a Snap without previous user approval; and
● Executing DoS attacks on other Snaps.

Findings
General Comments
MetaMask Snaps (Snaps) is a platform intended to enable the interaction between the MetaMask
Extension Wallet users and dApps. The Snaps system is composed of a wallet component that is
controlled by the MetaMask team, and a plugin (Snaps) component that is implemented by third-party

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 3
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.metamask.io/guide/snaps.html

developers. Snaps provides a mechanism for a user to grant dApps permissions to execute actions in the
wallet.

Our team reviewed the MetaMask Snaps implementation in a previous review, with the initial audit report
delivered on June 12, 2023. In this review, our team performed a security audit focusing on the Snaps
MetaMask Extension integration. The scope of this review was limited to the developments to the
MetaMask Extension needed to enable Snaps functionality.

A noteworthy characteristic of the threat model adopted by the MetaMask team in considering the design
and implementation of the MetaMask Snaps and the Extension, is the assumption that the user device is
secure. This implies that compromise of the user device or filesystem would render user secret data
vulnerable. As a result of these assumptions, the classes of attacks considered by our team during this
review were limited.

The areas of concern listed above and the threat model outlined by the MetaMask team guided our
review. In parallel, our team supplemented and reinforced the review by performing a threat tree exercise,
which facilitated brainstorming, documenting, and fleshing out potential attack vectors and additional
areas of concern.

Areas of Investigation
During the review, our team examined several areas for potential security vulnerabilities. We looked at how
the extension renders Snaps-generated content, and investigated possible Cross-Site Scripting (XSS)
attacks. We found that the Dialog enforces strict controls on what is rendered, and that the rendering is
performed in React.

Build and Registry Bypass

We examined how the extension build settings affect whether Snaps could be installed locally or only
from a designated registry. While we were not able to exploit any registry bypass, we do have concerns
over whether a malicious npm package could manipulate the code to construct an arbitrary registry URL.
The affected code is here. The concern is that the username could be an arbitrary domain, and the
password an arbitrary port, both controlled by an attacker. Because this code appends an @ character to
the URL, this would prevent a malicious URL from becoming valid, unless the URL comment character # is
injected into the password component. We were not able to exploit this, so the attack vector is entirely
theoretical at this time.

Memory Leaks

We investigated whether Snaps could read data from memory using unallocated Buffers. Although
unallocated buffers are known to leak memory in a Node environment, we found that this is not the case
in the browser. In the browser, all buffers – even those allocated unsafely – are empty (filled with null
bytes) since they are all initialized as UInt arrays. While a memory leak vulnerability in the V8 or
SpiderMonkey JavaScript engines could lead to the exposure of data from different Snaps, these classes
of vulnerabilities are considered out of scope for this audit and were not considered as potential attack
vectors.

Communications

We investigated the use of communication channels in the target implementation and did not identify
security vulnerabilities in this area. However, we recommend checking the origin of untrusted
communication channels (Suggestion 2).

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 4
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/MetaMask_Snaps/blob/main/packages/snaps-controllers/src/snaps/location/npm.ts#L73-L82

SES Override

We found an optional override function, createSnapExecutionService, that is the remnants from an
experimental desktop feature no longer in use. This function has the crucial task of building the SES
execution environment for Snaps. Therefore, the security of the entire Snaps platform relies on the secure
implementation of SES. Because the override behavior is undefined, we have no way to determine whether
it would be secure. It is therefore our recommendation that this override function be removed to prevent
any misuse in the future (Suggestion 1).

System Design
We found that security has been taken into consideration in the design of the Snaps functionality. Our
team only identified a single Issue in the design and implementation of the review’s target functionality.
We also identified concerns that are out of scope, but critical nonetheless. For example, the nested nature
of the system with many layers of software, in addition to the update and patch management, could put
the Snaps system at risk.

Moreover, Snaps must be allowlisted after a security audit. However, there is no clear process for
approving updates to allowlisted Snaps and removing Snaps that are no longer allowlisted. Hence, the
scaling of the Snaps functionality could be unwieldy, putting the system and its users at risk. Additionally,
our team identified an Issue in the handling of blocked Snaps by the extension (Issue A).

Code Quality
Our team found that the implementation is consistent in its quality with our previous review. The in-scope
code is well-written and adheres to best practice in implementation and tests. We found that the general
architecture of the MetaMask Snaps Extension is well-designed.

Tests

We found that sufficient test coverage of Snaps is implemented to check for implementation errors and
unexpected behavior that could lead to security vulnerabilities.

Documentation
The MetaMask ecosystem, including Snaps and the extensions, is generally well-documented.

Code Comments

The in-scope code is well-commented, with functions and their parameters well-described.

Scope
The second phase of this review targeted the functionality within the MetaMask Extension supporting
Snaps. Given our previous review of the Snaps implementations, our team found the scope of this review
included all security-critical components.

Dependencies

The MetaMask Extension uses LavaMoat to safeguard against dependency risks and supply chain
attacks.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 5
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: No Calls to SnapsRegistry:updateBlockedSnaps Found Resolved

Suggestion 1: Remove Override Functionality Resolved

Suggestion 2: Check Origin of Untrusted Communication Channels Unresolved

Issue A: No Calls to SnapsRegistry:updateBlockedSnaps Found

Location

src/snaps/SnapController.ts#L953

Synopsis

The SnapsRegistry:updateBlockedSnaps is exposed to the MetaMask system to update the
blocked Snaps list and disable any Snaps that have been deemed dangerous by the MetaMask team.
However, no calls were found to update the blocked list and block currently installed Snaps in the Snaps
Monorepo, the Extension, or the Core repository. Because of this, if a Snap is installed and later becomes
blocked, the system designed to protect the user from the blocked Snap is not being activated.

Impact

A blocked Snap will remain active in a user’s wallet after it has been blocked.

Preconditions

A Snap would need to be installed before it is added to the blocked list.

Remediation

We recommend making the extension perform the call SnapsRegistry:updateBlockedSnaps at
reasonable intervals.

Status

The MetaMask team has resolved this Issue by calling the updateBlockedSnaps function when the
snapsController is initialized during startup. This leaves the possibility that a Snap could be running in
a user environment even after being officially blocked, but only either until the browser is closed by the
user or the background service worker is terminated by the browser. We consider this a reasonable
update interval for the blocked Snaps.

Verification

Resolved.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 6
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/MetaMask_Snaps/blob/main/packages/snaps-controllers/src/snaps/SnapController.ts#L953

Suggestions

Suggestion 1: Remove Override Functionality

Location

app/scripts/metamask-controller.js#L868

Synopsis

An override functionality is provided to create the SES Execution Environment. Since this override function
is not defined, our team was unable to assess its security.

Mitigation

Due to the critical nature of the code’s function, we recommend opting for a clearly defined code path with
no potentially dangerous uses in the future. Additionally, we recommend removing the override
functionality and only instantiating the IframeExecutionService directly.

Status

The MetaMask team has removed the possibility of creating the SES Execution Environment via the
undefined override functionality.

Verification

Resolved.

Suggestion 2: Check Origin of Untrusted Communication Channels

Location

app/scripts/metamask-controller.js#L3714-L3716

Synopsis

The setupProviderConnection function has an Issue that is unlikely to be exploitable except in
incredibly extreme conditions that we were not able to replicate.

The function begins with an if/else branch that checks whether the SubjectType is Internal or
Snap. If the SubjectType is Internal, then the origin variable is set to the value
ORIGIN_METAMASK, which is the simple string metamask. If the communication channel is set up to
come from a Snap, this branch will not be taken. Instead, the branch where the SubjectType is Snap will
be taken. Here the origin is set to the value of sender.snapId. Because the snapId is partially
controlled by the attacker, we observed that if snapId could be somehow set to the string metamask,
this would have the same effects as SubjectType being set to Internal. However, we were unable to
find a way to get a snapId to equal the plain string metamask because it required either manipulating the
network or npm registries in extreme ways. Considering that all Snaps will require being audited, our team
considers that the scenario where a third-party Snap is allowed to have the snapId “metamask” is highly
unlikely.

Mitigation

We recommend including a check to verify that the senderId in the Snaps code branch does not equal
ORIGIN_METAMASK before proceeding with setting up the communication channel.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 7
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/MetaMask_Extension_Snaps/blob/main/app/scripts/metamask-controller.js#L868
https://github.com/LeastAuthority/MetaMask_Extension_Snaps/blob/main/app/scripts/metamask-controller.js#L3714-L3716

Status

The MetaMask team has decided that this is not a concern at this time.

Verification

Unresolved.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 8
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 9
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | MetaMask Snaps Extension | ConsenSys Software, Inc. 10
8 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

